Noise Reduction in a Bird Inspired Aero Foil using Trailing-Edge Serrations

Shiva Prasad U, R. Naren Shankar

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, TN, INDIA country
These authors contributed to this work equally.
* E-mail: shivaprasad047@gmail.com

Received: 21 April 2020
Accepted: 8 May 2020
Article type: Research Paper
DOI: https://dx.doi.org/10.30919/es8d1005

Abstract

The current work deals with the efficacy of the bionic-inspired airfoil of Tyto Alba (a barn owl) in noise reduction. Due to their distinct wing morphology, owls are noted for their quiet flying, which is astonishingly low-noise both when gliding and flapping. The low-noise operation of airfoil is inspired by these remarkable characteristics of owl flight. Research conducted in the past suggests that an airfoil that has an extensive sinusoidal profile can only reduce noise to a certain extent. As a coupling element, an owl-wing-inspired ridge is added to the trailing edge of airfoils with serrations in this work. This proposed method of noise reduction using trailing edge serrations showed the efficacy of a bionic-inspired airfoil with the existing approaches. A numerical study was performed using computational tools and has shown that the proposed bionic-inspired structure could reduce noise more effectively. The results show that wide wavelengths have less low-frequency tonal noise but more at high frequencies. This paper concludes that owl-inspired trailing edge serrations may be an effective aero-acoustic control device for wind turbines, aircraft, drones, and other fluid machines.
Keywords: Acoustics, Frequency, Noise reduction, Owl wing inspired Airfoil, Serrated wing, Sound pressure level.

1. Introduction

During the past few decades, aircraft have been studied for their aerodynamic performance. It is also an important research topic to study the aerodynamic noise from these practical applications. Airfoils are the base of blades as well as the topic of noise reduction studies.[10][11] Hence, it is of typical interest to study flow noise around airfoils. Traditional passive and active noise reduction techniques have made significant progress, but their application conditions and aerodynamic performance have deteriorated.[1][12] So, there is an urgent need to reduce noise in aerofoils with a novel design. The current advanced design of an airfoil uses noise as one of the critical design indicators.

acoustic and flow data for two serration geometries at 40m/s with the LES turbulence model noise prediction using Howe's theory. Varying serration geometry affects trailing edge noise production.

2. Methodology

2.1 Proposed Bionic Model

In the proposed work, an owl (Tytus alba)-inspired aerofoil is introduced for noise reduction. The Primary remiges of the owl wing mimic the leading-edge serrations, and the secondary edges mimic the trailing-edge serrations. The Bionic model of an owl's wing is shown in Figure 1.

![Fig. 1. Owl wing feather indicating feathers and edges](image)

After reconstruction of the bionic model based on Liu and Liao's investigations \cite{3,13}, a bionic aircraft airfoil may be extracted at the 40\% spanwise point of the wing model. The measurements and reconstruction of a bionic-inspired owl wing are the focus of these investigations. The thickness distribution and camber line are added and subtracted to describe an airfoil profile. \cite{7,8}

\[
D_u = d_e + d_t \quad (3.1)
\]

\[
D_l = d_e - d_t \quad (3.2)
\]
D_u is upper surface distribution; D_l is lower surface distribution; d_c is camberline distribution; d_t is thickness distribution

\[
\frac{d_c}{c} = \frac{d_{c(\text{max})}}{c} \eta (1 - \eta) \sum_{n=1}^{3} S_n (2\eta - 1)^{\eta-1}
\]

(3.3)

Fig. 2. Front view of Bionic inspired wing end view

In the proposed method a symmetric airfoil (NACA 0012) with 330 mm as chord length is employed and analyzed. Figure 4 shows the airfoil model components with three trailing edges:

- One without serrations
- Two with cut-out serrations.

Both of these cutting serrations possess a 30-mm amplitude root-to-peak and provide better structural integrity and strength.[5]

The study compares two different wavelengths of serration:
with $\lambda=6$ mm (also called wide serrations or $\lambda 6H30$, serrated design 1) and $\lambda=12$ mm (narrow serrations $\lambda 12H30$, serrated design 2).

![Illustration of NACA 0012 airfoil with trailing edges serrations](image)

Fig. 4. Illustration of NACA 0012 airfoil with trailing edges serrations

3. Mesh and Computational Setup

An unsteady flow with a velocity of 40 meters per second travelled over the NACA 0012 aerofoil with a chord of 330 millimetres and a span of 2 degrees in a numerical analysis at a 0-degree angle of attack. Transient flow analysis to account for unsteadiness by modifying the LES turbulence model and grid-dependent research with 0.8 million and 2.5 million cells to evaluate flow quality in relation to the grid were successful. Figures 5a and 5b demonstrate the calculation domain mesh modelling with surface mesh over the airfoil model. The Courant-Friedrichsen-Lewy (CFL) scale measures time numerically. 30 kHz for 0.1 second (50 flow crossings) measures the airfoil's surface pressure. The estimated fields are spatially averaged along the top, bottom, and spanwise directions due to serration flow periodicity. The computational setup replicates the experimental setup, which measures far-field noise using an isolated microphone (GRAS-46AE).[8] The microphone is 1.5 meters from the platform. The experimental arrangement is shown below:
Fig. 5a Computational domain of the acoustic model NACA 0012 airfoil with mesh.

Fig. 5b Mesh elements in the flow domain with an explored view of the airfoil and surface mesh.
Sound pressure levels are sampled at Baseline, 6H30, and 12H30 with different sampling frequencies. For the selected frequencies, the minimum at baseline is 140.99 Hz, and the maximum at baseline is 4014.91 Hz. The lowest, at Baseline, and highest sound pressures are 67.00 hz, and the maximum is 55.13 Hz. Noise data is obtained by using a computational tool with a large eddy simulation model in the frequency range of 100 Hz to 100 kHz for 150 seconds. SPL for One third-octave is extracted at 1.5m above the serration of the wing, and seven receivers are placed over the serration edge to capture the SPL effectively. Experimentally, a 4014 data set point window size was used, whereas in the current work, data is extracted over the serration at the centerline of the wing and in between the serrations. At an angle of attack ($\alpha = 0^\circ$), Acoustic data is obtained at a speed of $V_\infty = 40 \text{ m/s}$.

Results

Baseline and serrated design Analysis
The SPL data is compared with the baseline experimental data and serrated wing data provided in the proposed study, which correspond to the condition where the main body of the NACA 0012 airfoil has an unserrated trailing edge. [9] Figure 6 shows the SPL plot for this scenario at various flow rates that are compared with experimental data. The NACA 0012 airfoil generates broadband self-noise at the tested flow speeds of 40m/s, as shown in figures 6 and 7.

An Analysis Figure 6 depicts serrated design 1, with noise-based serrated trailing edges at V = 40 m/s. Several previous observations have found high frequencies. [5] Above the baseline, these additional serrations result in the amplification of low-frequency narrow-band noise, which adversely impacts the reduction of noise. As flow speed increases, there is an increase in Low-frequency tonal noise, while the number of serrations decreases with wavelength.

Based on the trailing edge serration bluntness and the Strouhal number St = f/V∞, Figure 6 illustrates the difference in ∆SPL. That is between the experimentally recorded data and numerically determined trailing edge serration sound pressure level data. In ∆SPL, the positive value corresponds to increased noise, whereas the negative value corresponds to reduced noise. The spectral hump is seen to collapse into nearly constant St = f/V∞ values as the flow speed changes. As a result, tonal noise arises from the vortices in the serrations. Because wide serrations reduce broad-band noise more at mid frequencies than narrow serrations, while the latter raise low and high-frequency noise less, the former reduces broad-band noise more at mid frequencies. Serrations with wide serrations surpass serrations with narrow serrations.

The sound pressure level for serrated design 1 is represented in Figure 6. Frequency is represented in the x axis and the y axis by SPL. The sound pressure level for serrated designs reaches its peak
at 67 dB at 2000 Hz for computational data. While for experimental data, the sound pressure level for a serrated design reaches its peak at 64 dB at 2000 Hz.

Serrated design 2 sound pressure level is represented in Figure 7. Frequency is represented in the x axis and the y axis by SPL. The sound pressure level for serrated designs reaches its peak at 67 dB at 2000 Hz for computational data. While for experimental data, the sound pressure level for a serrated design reaches its peak at 65 dB at 200 Hz. The SPL of Computational and Experimental data is the same and merges at 10 kHz. The plots in Figures 6 and 7 show that the calculated findings agree well with the experimental data, indicating that the computational method has reliably forecast the experimental results.

Fig. 6. Sound pressure level of Serration design 1
Fig. 7. Sound pressure level of Serration design 2

The sound pressure level for receivers located at different locations as presented in table I is indicated as R1, R2, R3, R4, R5, R6, R7, R8. Serrated design 2 is represented in Figure 8. Frequency is represented in x axis and y axis is SPL. The sound pressure level for serrated design reaches is maximum at R2 and R6 above 110dB and R4 at 1kHz. The sound pressure level decreases on increasing frequency. The SPL is minimum at 10kHz.

<table>
<thead>
<tr>
<th>Receiver Name</th>
<th>Receiver Location at the Trailing Edge of Wing</th>
<th>Serration design 1 (OASPL)dB</th>
<th>Serration design 2 (OASPL)dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>X(m): 0.266, Y(m): 0.0047, Z(m): 0.199</td>
<td>100.263</td>
<td>99.0649</td>
</tr>
<tr>
<td>R2</td>
<td>X(m): 0.273, Y(m): 0.0038, Z(m): 0.199</td>
<td>137.857</td>
<td>100.277</td>
</tr>
<tr>
<td>R3</td>
<td>X(m): 0.280, Y(m): 0.0029, Z(m): 0.199</td>
<td>114.541</td>
<td>115.648</td>
</tr>
<tr>
<td>R4</td>
<td>X(m): 0.287, Y(m): 0.0020, Z(m): 0.199</td>
<td>119.127</td>
<td>113.008</td>
</tr>
<tr>
<td>R5</td>
<td>X(m): 0.294, Y(m): 0.0012, Z(m): 0.199</td>
<td>115.303</td>
<td>86.341</td>
</tr>
<tr>
<td>R6</td>
<td>X(m): -0.560, Y(m): 1.2287, Z(m): 0.202</td>
<td>67.2802</td>
<td>72.4444</td>
</tr>
<tr>
<td>R7</td>
<td>X(m): 1.160, Y(m): 1.2287, Z(m): 0.202</td>
<td>66.7925</td>
<td>72.163</td>
</tr>
<tr>
<td>R8</td>
<td>X(m): 0.300, Y(m): 1.5, Z(m): 0.199</td>
<td>69.7962</td>
<td>74.8663</td>
</tr>
</tbody>
</table>
Fig. 8. Sound pressure level of R1 to R8 for serration design 2

The sound pressure level for (R1, R2, R3, R4, R5, R6, and R7) serrated design 1 is represented in Figure 9. Frequency is represented in the x axis and the y axis by SPL. The sound pressure level for serrated designs reaches its maximum at R2 110 dB, R6 109 dB, and R4 50 dB at 1 kHz. The sound pressure level decreases with increasing frequency. The SPL is decreasing with an increase in frequency level, as presented.

Fig. 9. Sound pressure level of R1 to R8 for serration design 1
Airfoil data for two serrated variants of the NACA 0012 airfoil was developed using a Large Eddy Simulation (LES) model with unsteady flow analysis. The vortex model sheds the airfoil. Thus, quiet owl flight research could lead to a new biomimetic design or noise reduction technology for wind turbine blades or rotors, airplanes, and multi-rotor drones. Wind turbine blades and rotors could benefit from biomimetic design or noise reduction technologies. In order to evaluate computational tools, a study was conducted to validate the results using coefficients of lift and drag data over dimensionless time. The variation of coefficients with respect to time is in the range of 0.0075 to 0.01 for the serrated design 2, and the coefficient of list was close to zero in both the design evaluations of the NACA 0012 wing with serrations.

Fig. 10 Iso surface contour of Serration design 1 and Serration design 2 and the bottom image shows the mode section along the centerline of the plan view showing the vortex shedding over the airfoil.
Figure 11 represents the coefficient of lift of a serrated design 2 aerofoil, where the X axis is time and the Y axis is Coefficient of lift. That is increasing at 20s, reaching a maximum at 60s, and again at 150s. Figure 12 represents the Coefficient of lift of the serrated design 1 NAC0012 foil. Where X is time and Y is the coefficient of lift. C_l Gradually increases at 20 s and reaches its peak at 80–100 s. Figure 13 represents the coefficient of drag of the serrated design 2 aerofoil, where the X axis is time and the Y axis is Coefficient of drag. The C_D 0.007 declines at 10s and steadily progresses till 110, then again elevates a little 0.08 C_D and progresses steadily till 160s. Figure 14 represents the coefficient of drag of the serrated design 1 aerofoil, where the X axis is time and the Y axis is Coefficient of drag. The C_D 0.001 declines from 0 to 10s and steadily progresses until 160s.

Fig. 11 Coefficient lift for Serration Design 2
Fig. 12 Coefficient lift for Serration Design 1

Fig. 13 Coefficient Drag for Serration Design 2

Fig. 14 Coefficient Drag for Serration design 1
4. Conclusions

We investigate the applicability of LES for modelling both types of toothed wings. Serrations on the trailing edge of a bionic-inspired airfoil have been shown to reduce noise significantly. Compared to narrow serration, wide serration is 2 dB more effective at reducing noise in the midrange, according to computational studies. The significance of pressure over the wing is well demonstrated by experimental and computational studies, which concur well. This research was highly sought after by experts, who have long been intrigued by the owl's intricate navigational techniques and stable management of the aero-acoustic environment while flying silently. The sound waves emitted by the various sensors are affected by the pressure differential across the wing's serrations. Lift and drag contribute to the commotion at the serrations on the trailing edge. The noise-cancelling mechanism, the effects of serration width on aerodynamics, the brush's hair and length, and so on, will all be the subject of further study.

5. Future Work

This investigation aims to reduce the noise level of the NACA 0012 aerofoil. Unsymmetrical airfoil design options with acoustically optimized wing designs can be the subject of future research. In subsequent studies, the porosity of owl wing membranes can be analyzed and utilized for noise reduction. Future research might include the bird-inspired bionic wing.

Conflict of interest

There are no conflicts to declare.
References

Publisher's Note Engineered Science Publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Table of Contents Entry:

Aerodynamic and acoustic data are evaluated over the wing model, and the receiver is located 1.5 m from the wing's trailing edge in a radial pattern, as shown in the picture. The computational setup for measuring far-field noise is similar to the experimental configuration, which uses a dedicated microphone (GRAS-46AE). The microphone is located 1.5 metres from the stern's edge.

Innovative description

This article presents owl-inspired trailing edge serrations improve aero-acoustic control for wind turbines, aircraft, drones, and other fluid systems.