Progress in Cellulose/Carbon Nanotube Composite Flexible Electrodes for Supercapacitors

Zhe Sun,1

Houjuan Qi,1

Manhui Chen,1

Sitong Guo,1

Zhanhua Huang,1*Email

Srihari Maganti,2

Vignesh Murugadoss,3

Mina Huang2,3 

Zhanhu Guo2*Email

1Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, College of Material Science and Engineering, Northeast Forestry University, Harbin, 150040, China

2Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States

3Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech LLC, Knoxville, TN 37934, United States


Nowadays, there is an increasing demand for wearable, portable and foldable small electronic products, and human-computer interaction interface devices. Therefore, the supercapacitors as the energy storage device were extensively studied owing to their high energy/power density, fast charge-discharge processes, and long cycle life. Wherein the flexible electrode material is the essential component to boost the performance of supercapacitors. Cellulose, as a kind of natural flexible material with low-cost, wide-sourced, renewable, and robust mechanical properties, have been used as flexible substrate or template of electrodes. To enhance conductivity and excellent electrochemical performance of the cellulose-based flexible electrode, the carbon nanotube (CNT) with high-conductivity, good thermal and chemical stability, and unique internal structure was integrated. Thereby, the cellulose/CNT-based flexible electrodes with high energy/power density and long cycle life performance of flexible supercapacitors are prepared. This review mainly focuses on cellulose/CNT, emphatically summarizing the composition, preparation, and mechanism of the cellulose/CNT-based composite flexible electrode for supercapacitors. Additionally, the current challenges and prospects of the cellulose/CNT-based composite flexible electrode are discussed.

Progress in Cellulose/Carbon Nanotube Composite Flexible Electrodes for Supercapacitors