Optimizing Strategy for the Dielectric Performance of Topological-structured Polymer Nanocomposites by Rationally Tailoring the Spatial Distribution of Nanofillers

Liang Sun,1 Liang Liang,1 Zhicheng Shi,1,* Huanlei Wang,1 Peitao Xie,2,* Davoud Dastan,3 Kai Sun4 and Runhua Fan4

1School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
3Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia-30332, USA
4Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

*Corresponding author: Zhicheng Shi; Peitao Xie

*E-mail: zcshi@ouc.edu.cn; xiepeitao1991@qdu.edu.cn
Abstract

There is a mindset that functional fillers tend to be as homogeneous as possible to achieve high dielectric constant and low loss when designing polymer dielectric composites. This study breaks the mindset by proposing a novel inhomogenous design in a topological-structured polymer nanocomposite, the dielectric performance is optimized by rationally controlling the spatial distribution of nanofillers. We prepared layered composites where BaTiO$_3$ and TiN nanoparticles were dispersed in the top and bottom section of the P(VDF-HFP) composites, respectively. Interestingly, the layered inhomogenous composites exhibit obviously enhanced dielectric permittivity (1.5 times as high), suppressed loss (a 70% drop) and improved breakdown strengths (4.2 times as high) compared with their single-layer homogenous counterparts. This dielectric optimization is mainly attributed to the design of multilevel interfaces and the redistribution of polarization charges in the inhomogenous topological structure. This research provides a novel optimizing strategy and will promote the development of dielectrics.

Keywords: Polymer composites; Dielectric property; Multilayer structure; Film capacitor; Interfacial polarization.

Received date: 31 August 2020; Accepted date: 31 October 2020

DOI: https://dx.doi.org/10.30919/es8d1148

Article type: Research article
1. Introduction

High dielectric constant (high-\(k\)) materials have gained ever-increasing attention in recent years because of their wide applications in capacitors,1-6 actuators,7-10 microstrip antennas,11,12 field-effect transistors (FETs),13,14 and high voltage transmission lines,15,16 etc. So far, various strategies have been developed to achieve improved dielectric performances (i.e., high dielectric constant, low loss, and high breakdown strength, etc.), among which constructing polymer composites filled with conductive fillers (e.g., metals, carbon nanotubes, graphene, conductive polymers, etc)12,17-25 or ferroelectric ceramic (e.g., BaTiO\(_3\), SrTiO\(_3\), CCTO, etc)26-32 is believed to be an effective way to achieve high-performance dielectrics. These two typical strategies always pursue the homogeneous distribution of functional fillers as far as possible for the aim of simultaneous high dielectric constant and low loss. However, these two typical strategies still have a long way to go for the goal. For instance, although ultrahigh dielectric constants over 10\(^3\) @1 kHz have been achieved in percolative conductor/polymer composites, severely elevated loss along with sharply decreased breakdown strengths are always inevitable. As for the ferroelectric ceramic/polymer composites, the enhancement of dielectric constant is usually far below expectations even the loading fractions of the ferroelectric ceramic fillers exceed 50 vol\%, and breakdown strengths are obviously deteriorated.33-35 Consequently, the achievement of enhanced dielectric constant without sacrificing low loss and high breakdown strength is a challengeable problem to be
addressed until now.

Considering the inherent limitations of the aforementioned two types of high-\(k\) polymer composites, researchers proposed the ternary polymer composites co-filled with ferroelectric ceramic and conductors in order to effectively balance the dielectric constant, loss, and breakdown strength. Following this idea, various ternary polymer composites were designed and the dielectric performances were explored. Wang et al. fabricated the ferroferric oxide/multiwalled carbon nanotube/polyvinylidene fluoride composites\(^{36}\), whose dielectric constant was significantly improved while the loss remained at a lower level, compared with their binary counterparts of \(\text{Fe}_3\text{O}_4/\text{PVDF}\) and MWNT-s/PVDF. Hu et al. designed the polypropylene composites co-filled with semi-conductive tetra-needle-shaped zinc oxide whiskers (ZnO) and barium titanate (BT) nanoparticles\(^{37}\), where an improvement of dielectric permittivity (from 8.5 to 11) and a decline of loss tangent (from 0.008 to 0.004) could be realized simultaneously. Jaschin et al. constructed a ternary percolative polymer composite consisting of lanthanum nickelate (LaNiO\(_3\)) nanocrystals, barium titanate (BaTiO\(_3\)) nanocrystals and polyvinylidene fluoride\(^{38}\), a high dielectric constant of 90 at 10 kHz (and a low loss of 0.13) was obtained with the LaNiO\(_3\) content below the percolation threshold. The achieved dielectric constant is around 9 times that of pure PVDF and 3 times that of BaTiO\(_3\)/PVDF nanocomposite. Up to now, extensive researches of constructing ternary composites with excellent comprehensive dielectric performances have been carried out and many encouraging progresses were reported. However, the improvement is still not satisfactory, and the design of the ternary composites has still followed principles that the nanofillers should be homogeneous in the polymer matrix to obtain low dielectric loss as well as high dielectric constant\(^{39-45}\).

In this paper, we proposed a novel inhomogenous design in a layered topological-structured polymer nanocomposite, in which the ferroelectric ceramic fillers and conductive fillers were restricted in respective separated layers, and the dielectric performance was adjusted by rationally controlling the spatial distribution of these nanofillers, as shown in Fig. 1. It is demonstrated that, the layered inhomogenous composites exhibit enhanced dielectric constants, suppressed loss and obviously improved breakdown strengths.
in comparison with their single-layer homogenous ternary counterparts. Furthermore, the layered composites also display much higher energy densities and efficiencies than that of the corresponding single-layer composites.

2. Experimental

2.1 Materials

Barium titanate (BaTiO$_3$, < 300 nm, > 99.5 %, Aladdin Industrial Corporation), titanium nitride (TiN, 20 nm, 99.9 %, Shanghai Macklin Biochemical Co., Ltd.), poly (vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP), 15 % HFP, PolyK Technologies, USA), 1-Methyl-2-pyrrolidone (C$_5$H$_9$NO, ≥ 99.0 % Sinopharm Chemical Reagent Co., Ltd.), sodium dodecylbenzenesulfonate (C$_{18}$H$_{29}$NaO$_3$, ≥ 88.0 %, Sinopharm Chemical Reagent Co., Ltd.) and ethanol (≥ 99.7 %, Sinopharm Chemical Reagent Co., Ltd.) are purchased and used without any further treatment.

2.2 Preparation of single-layer and trilayer composites

Pure P(VDF-HFP), single-layer BaTiO$_3$/P(VDF-HFP) and TiN/P(VDF-HFP) composites were prepared via solution casting and subsequent hot-pressing techniques. Firstly, BaTiO$_3$, TiN and sodium dodecylbenzenesulfonate (SDBS) were ultrasonically dispersed into 10 mL 1-Methyl-2-pyrrolidone (NMP) for 1 h to obtain a stable suspension at room temperature. Then, adding P(VDF-HFP) pellets into the suspension under magnetic stirring at 75 °C until they were dissolved completely. For the preparation of pure PVDF solution, the P(VDF-HFP) pellets are directly dissolved in 1-Methyl-2-pyrrolidone (NMP) under rapid magnetic stirring at 75 °C for 5 h and slow stirring at room temperature overnight. The solution casting method was adopted to prepare the single-layer composites. Specifically, the as prepared solution was casted on a glass plate followed by drying in an oven at 100 °C for 4 h and 200 °C for 5 min. The films were peeled off via quenching in ice water and dried in an oven at 70 °C for 6 h, forming the single-layer BT/P(VDF-HFP), TiN/P(VDF-HFP) and pure P(VDF-HFP) films. Finally, trilayered films were obtained via stacking and hot-pressing a BT/P(VDF-HFP) film, a pure P(VDF-HFP) film and a TiN/P(VDF-HFP) film at 160 °C under a pressure of 8 MPa for 20 min. The thicknesses of the single-layer composites were controlled in the range of
10-15 μm via adjusting the height of the blade, and the thicknesses of the trilayer composite films were controlled to be 35-40 μm. For example, the sample code of the ternary composites with one or three layers can be expressed as 10-0.3, the meaning is that the volume fractions of BaTiO$_3$ and TiN in the ternary composites are 10 vol% and 0.3 vol%, respectively.

2.3 Morphology and composition characterization

The morphologies of the trilayer films and the elemental distributions of barium, titanium, nitrogen and carbon were observed by scanning electron microscopy (SEM, S-4800, Hitachi, Ltd.) coupled with EDX. The compositions of the trilayered composites were analyzed by X-ray diffractometer (XRD, D8, Advance, Bruker, Ltd.).

2.4 Dielectric spectra, breakdown strength and energy-storage measurements

For the dielectric measurement, circular gold electrodes with a diameter of 2.98 mm were sputtered on the two sides of the samples before dielectric measurements. The dielectric properties were analyzed with an Agilent E4980A Precision LCR analyzer in the frequency range from 100 Hz to 1 MHz. Open and short compensations were performed before testing. The permittivity was calculated by $\varepsilon_r = \frac{t C_p}{A \varepsilon_0}$, where t is the thickness of the sample, A is the area of the electrode, C_p is the parallel capacitance, and ε_0 is the absolute permittivity of free space (8.85×10^{-12} F m$^{-1}$). The breakdown strengths were obtained using a setup equipped with a Treck 609A amplifier with a voltage ramping rate of 500 V/s at room temperature (PolyK Technologies, USA). The energy storage performances, including discharge energy densities and charge-discharge efficiencies were derived from the P-E hysteresis loops which were collected at 1 kHz using a ferroelectric test system based on a modified Sawyer-Tower circuit at room temperature (PolyK Technologies, USA).

3. Results and discussions

The optical photograph and cross-sectional SEM morphologies of the 10-1 trilayer composite are presented in Fig. 2. As seen, the trilayer film is flexible and has smooth surfaces. The SEM image confirms the distinct trilayer configuration, in which the three layers are tightly welded together without the appearance of noticeable defects (e.g., pores,
cracks, etc.). Moreover, the high-magnification cross-sectional SEM images shown in **Fig. S1** demonstrated that the BaTiO$_3$ particles are homogeneously dispersed in the P(VDF-HFP) matrix. The EDX mapping results further demonstrated that the BaTiO$_3$ and TiN nanoparticles are well restricted in the P(VDF-HFP) matrix without apparent diffusion into the middle P(VDF-HFP) layer, as shown in **Fig. 2** and **Fig. S1**. In this work, the thicknesses of the single layer and multilayer composites were well controlled via adjusting the scraper height and the hot-pressing parameters.

Fig. 2e shows the XRD patterns of the trilayer composite consisting of a pure P(VDF-HFP) layer sandwiched by a TiN/ P(VDF-HFP) composite layer with 1 vol% TiN content and a BT/P(VDF-HFP) composite layer with 10 vol% BT content. The characteristic diffraction peaks corresponding to the (1 0 0), (1 1 0) and (1 1 1) crystal planes of perovskite BaTiO$_3$ are observed at 2θ = 22.0°, 31.4° and 38.7°, respectively. Only one weak characteristic diffraction peak of TiN is observed at 2θ = 74.068° because of the ultralow filling fraction of TiN nanoparticles (in **Fig. S1b**). No additional diffraction peaks are observed, indicating that no impurities were introduced into the composite during the preparation process.

The frequency dependences of dielectric permittivity and loss tangent for the hybrid single-layer and trilayer composites are presented in **Fig. 3**. As shown in **Fig. 3a**, the ternary single-layer composites show obviously improved dielectric permittivity in comparison with the pure P(VDF-HFP), the dielectric permittivity increases with higher loading fractions of TiN nanoparticles, which is due to the interfacial polarization and the formation of equivalent microcapacitors occurred at the interfaces between the nanofillers and P(VDF-HFP) matrix.$^{56-40}$ In addition, the dielectric performances of the single-layer composites filled with only one type of fillers were also obtained and presented in **Fig. S2**. We can see that, although the dielectric permittivity of the TiN/P(VDF-HFP) composites can reach as high as ~ 50 @10 kHz, the loss tangent also exceeds 5 @10 kHz, which is not suitable for practical applications. On the contrary, although the low loss tangents are well maintained in the BT/P(VDF-HFP) composites, the enhancement of dielectric permittivity (i.e., $\varepsilon_r \sim 13$ @10 kHz) is limited. Therefore, the ternary single-layer composites co-filled with BaTiO$_3$ and TiN nanoparticles
exhibit superior comprehensive dielectric performances over the single-layer composites filled with only one type of fillers. It is worth noting that the trilayer composites exhibit further higher dielectric permittivity compared with the ternary single-layer composites in Fig. 3c. This phenomenon could be attributed to the extra charge carrier accumulation and interfacial polarization at the interfaces between adjacent layers.50,51 Besides, the obvious enhancement of dielectric permittivity is achieved without sacrificing low loss. As shown in Fig. 3b and 3d, the loss tangent of the trilayer composites are significantly lower than that of the single-layer ternary composites, even close to that of pure P(VDF-HFP). In the layer-structured composites, the pure P(VDF-HFP) layer can effectively hamper the formation of leakage conduction path throughout the whole composites, yielding the suppressed conductivities (Fig. S3) and thus retained the low loss well. Moreover, the layer-structured composites exhibit similar permittivity frequency dispersion behaviors with the pure P(VDF-HFP), that is, permittivity decreases slightly with increasing frequency owing to gradual dielectric relaxation of different types of polarizations. The weak frequency dependence of permittivity is beneficial to the application in a wide frequency range. Fig. 3(e-f) show the comparison of dielectric performance at 10 kHz between the ternary single-layer and trilayer composites with the same content of BaTiO\textsubscript{3} and TiN. It can be observed that the dielectric properties of trilayer composites are always better than those of the ternary single-layer composites with the same composition, that is, dielectric permittivity is higher, at the same time, dielectric loss is lower. The trilayer composite 10-1 displays a dielectric permittivity of \(\sim 21.5 \) @10 kHz which are about 2.9 and 1.5 times of the pure P(VDF-HFP) (\(\varepsilon_r \sim 7.5 \) @10 kHz) and its ternary single-layer counterpart (\(\varepsilon_r \sim 14.4 \) @10 kHz). Moreover, the dielectric permittivity of the trilayer composites are further optimized by increasing the BaTiO\textsubscript{3} content to 15 vol\% or 20 vol\% (Fig. S4a and S5a). It can be concluded that constructing layered structures is an effective way to achieve enhanced dielectric permittivity without sacrificing low loss.

It should be noted that the breakdown strengths of dielectric materials are of great significance in practical applications. Specifically, when the dielectric materials are applied in film capacitors, a higher breakdown strength allows a larger charging electric field and full
polarization, hence a higher energy-storage density. Therefore, the breakdown strengths of the composites are further evaluated using the two-parameter Weibull distribution, which is described by Eq. (1):

\[P(E) = 1 - \exp \left(-\left(\frac{E}{\alpha} \right)^\beta \right) \]

(1)

where \(P(E) \) is the cumulative failure probability, \(E \) is the experimentally tested breakdown electric field, \(\alpha \) is the electric field for which there is a 63.2 % probability of sample breakdown (Weibull breakdown strength, \(E_b \)), and \(\beta \) is a shape parameter or the slope of the derived logarithm function reflecting the scatter of the tested \(E_b \). When the \(\beta \) value is 3, the tested data follow Gaussian distribution, and a higher value of \(\beta \) implies a higher level of reliability. Fig. 4 presents the Weibull breakdown strength of the ternary single-layer and trilayer composites. As shown in Fig. 4a, all of the plots show high \(\beta \) values, indicating high reliability of the measured data. The pure P(VDF-HFP) has the highest \(E_b \) of ~ 368.82 kV/mm.

All ternary single-layer composites present low breakdown strengths mainly owing to the existence of conductive TiN nanofillers, besides, the low breakdown strength is also attributed to the inherent low \(E_b \) of BaTiO\(_3\), the electric field distortion near TiN and BaTiO\(_3\) particles as well as the defects induced by the agglomeration of nanofillers. With increasing TiN loadings, the \(E_b \) of the single-layer ternary composites decreases gradually, yielding the lowest \(E_b \) of 50.24 kV/mm in the ternary single-layer 10-1 composite. Interestingly, the trilayer composites exhibit obviously improved \(E_b \) compared with their single-layer ternary counterparts, which is also true for the trilayer composite with 20 vol% BaTiO\(_3\) (Fig. S4). Especially, the \(E_b \) of trilayer 10-0.3 nanocomposite reaches 253.84 kV/mm, which represents a ~ 286 % increment compared with its single-layer ternary counterpart. The enhanced breakdown strength of trilayer composites is mainly attributed to three factors. Firstly, it is well known that the gradient distribution of electric field can be formed inside the multilayer composites when an electric field is applied, that is, the electric field tends to concentrate on the layers with low dielectric permittivity\(^{2,24,32-54}\) therefore, the pure P(VDF-HFP) layer undertakes much higher strengths of electric field than the other two layers in the trilayer composites due to the lower dielectric permittivity of P(VDF-HFP), which thus prevents the early breakdown of the whole trilayer composites because of the inherent high \(E_b \) of P(VDF-HFP). Secondly, the electric
field gap between adjacent layers in the layer-structured composites could act as a barrier to hamper the development of electrical trees, leading to improved breakdown strengths.9,27,55

Thirdly, the two macroscopic interfaces between the adjacent layers in the trilayer structure effectively obstruct the development of electrical trees and thus improve the E_b of the trilayer composites. Specifically, the E_b of the trilayer composites of 10-0.3, 10-0.7 and 10-1 are $\sim 286\%$, $\sim 415\%$, and $\sim 423\%$ that of their single-layer ternary counterparts in Fig. 4b. As discussed above, when a single-layer composite is redesigned as a layer-structured composite, the macroscopic structure design and the redistribution of fillers will achieve the improvement of dielectric breakdown strengths.

To better understand the remarkably enhanced E_b of the trilayer composites, finite element simulations were further performed to analyze the electric potential and electric field strength distribution in the single-layer and trilayer composites. As shown in Fig. 5(a-b), the equipotential lines of the composites are distorted around the BT particles owing to the distinct dielectric permittivity and conductivity contrast between the ceramic fillers and the P(VDF-HFP) matrix. The electric field is elevated in the vertical direction of the fillers due to the electron movement driven by the electrostatic force, while it is weakened in the horizontal direction of the fillers. Obviously, the local electric field distortion phenomenon around the fillers is more severe in the single-layer ternary composite than that in the trilayer composite, as shown in Fig. 5(c-d). Moreover, the incorporation of the fillers into the outer layers leads to the electric field redistribution, where the applied electric field is mostly distributed to the middle layer and weak electric field regions are formed in the outer layers.26, 27 In other words, the middle layer which possesses a higher breakdown strength undertakes a higher electric field compared with the two outer layers. Therefore, the trilayer composites could tolerate higher electric fields than single-layer composites at the same applied electric field. Furthermore, the distribution of current densities for the ternary single-layer and trilayer composites are also evaluated using the finite element simulation, as shown in Fig. 5(e-f). Clearly, the distribution of current density in the single-layer ternary composite is highly inhomogeneous in the vicinity of the fillers, whereas it is relatively homogeneous in the trilayer composite. In addition, leakage current paths are observed between the adjacent fillers
which are very close to each other. For the single-layer ternary composite, the BT and TiN particles are randomly dispersed in the P(VDF-HFP) matrix. Accordingly, there may exist some regions where the BT and TiN particle are close to each other along the direction of applied electric field, hence, leakage current paths throughout the whole composite could be easily formed in these regions, leading to high leakage current loss. As for the trilayer composites, the leakage current paths are restricted inside the outer layer, thus avoid the formation of leakage current paths throughout the whole composite. Consequently, the trilayer composites exhibit much lower loss and electrical conductivities than their single-layer counterparts, as displayed in Fig. 3 and Fig. S3. In general, the trilayer structure, in comparison with the single-layer structure, could arouse the redistribution of electric field and current density, leading to the improved breakdown strengths and depressed leakage conductance loss.

The unipolar electric displacement-electric field (P-E) loops for the ternary single-layer and trilayer composites are illustrated in Fig. 6(a-c), Fig. S4d and Fig. S5d. For the ternary single-layer composites, the P-E loops under high electric fields were not obtained because of their low breakdown strengths as aforementioned. It can be observed that, the single-layer ternary composites show much wider loops than their trilayer counterparts under the same external electric field, indicating enhanced energy loss and suppressed efficiency. Besides, the trilayer composites have higher maximum polarization (P_{max}) but lower remnant polarization (P_r) than single-layer ternary composites in Fig. 6c. Fig. 6(d-e) show the variations of P_{max} and P_r with external electric field. It can be observed that the trilayer composites exhibit substantially enhanced P_{max} in comparison with their single-layer counterparts and pure P(VDF-HFP). Fig. 6f shows the differences of P_{max} and P_r between the ternary single-layer and trilayer composites. The P_{max}-P_r value of the trilayer composites increases due to the obvious enhancement of P_{max} and slight elevation of P_r, which is beneficial to the improvement of energy density and efficiency. For instance, the trilayer composite of 10-1 exhibits a P_{max} of ~6 μC/cm2 and a P_r of ~0.63 μC/cm2, while the P_{max} and P_r of pure P(VDF-HFP) are ~2.76 μC/cm2 and ~0.47 μC/cm2 respectively; consequently, the trilayer composite of 10-1 possesses a high (P_{max}-P_r) of 5.36 μC/cm2 which is over 2 times that of
pure P(VDF-HFP) \((P_{\text{max}} - P_r \sim 2.28 \, \mu \text{C/cm}^2) \). Compared with pure P(VDF-HFP), the enhanced \(P_{\text{max}} \) of ternary single-layer composites is mainly attributed to the dipole polarization of nanoparticles and the interfacial polarizations at the interfaces between nanofillers and polymer matrix. As for the trilayer composites with the same composition, the contribution from the nanofillers and the interfaces is almost at the same level to their single-layer counterparts. Therefore, the obviously extra improvement of \(P_{\text{max}} \) is attributed to the interfacial polarization at the interfaces between adjacent layers for trilayer composites.

The dielectric energy-storage performances of the composites are further evaluated. The stored energy densities \((U_s) \) of the composites were derived from the \(P-E \) loops by integration of the area between the charge curve and the ordinate, while the discharged energy densities \((U_d) \) were obtained by integrating the area between the discharge curve and the ordinate, the discharge efficiencies \(\eta \) were calculated by using \(\eta = U_d / U_s \). **Fig. 7** shows the discharged energy densities and discharged efficiencies of the ternary single-layer and trilayer composites under varied external electric fields. The single-layer ternary composites can only be charged under low electric fields because of their low breakdown strengths as aforementioned, leading to very low energy-storage densities below 0.5 J cm\(^{-3}\). The discharged efficiencies \(\eta \) of the single-layer ternary composites decrease sharply with increasing applied electric field. For example, the \(\eta \) of the single-layer ternary composites of 10-0.3, 10-0.7 and 10-1 are decreased to 82 %, 82.6 % and 64 % at 50 kV/mm, respectively. On the contrary, the trilayer composites exhibit substantially enhanced energy-storage densities and high discharged efficiencies in comparison with their single-layer counterparts. The trilayer composite of 10-1 displays an energy density of \(\sim 5 \) J cm\(^{-3}\) which is 180 % that of the pure P(VDF-HFP) at 240 kV/mm. Meanwhile, a satisfactory efficiency of 64.5 % at 240 kV/mm is retained. This work will greatly promote the dielectric energy-storage performance optimization and the practical application of layer-structured dielectric composites in hybrid electric vehicles, medical defibrillator, and electromagnetic launch systems, etc.

4. **Conclusions**

In summary, a series of ternary TiN/BaTiO\(_3\)/P(VDF-HFP) composites with different spatial distribution of fillers were prepared via solution casting and hot pressing. It is
demonstrated that the layer-structured composites in which the TiN and BaTiO$_3$ nanoparticles are restricted in respective separated layers exhibit simultaneously improved dielectric permittivity and breakdown strengths in comparison with their single-layer counterparts with randomly dispersed fillers. Particularly, the trilayer composite with 10 vol % BaTiO$_3$ and 1 vol% TiN exhibits a dielectric permittivity of 21.5 at 10 kHz and a breakdown strength of 217 kV/mm, which are ~ 150 % and ~ 423 % that of its single-layer counterpart. Consequently, a high energy density of ~ 5 J cm$^{-3}$ which is 180 % that of the pure P(VDF-HFP) at 240 kV/mm, were obtained along with a satisfactory efficiency of 64.5 %. This work shows that, constructing layer-structured ternary nanocomposites with hierarchical rather than random distribution of the fillers is an effective strategy to achieve superior comprehensive dielectric energy-storage performances.

Acknowledgements

The authors acknowledge the financial support of this work by National Natural Science Foundation of China (51773187, 51402271), Foundation for Outstanding Young Scientist in Shandong Province (BS2014CL003), the “Chenguang Program” supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (Grant No. 18CG56), the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2019-01-07-00-10-E00053).

Support information

Not applicable

Conflict of Interest

There are no conflicts to declare.
References

ACS Appl. Mater. Interfaces, 2018, 10, 26713-26722.

Figures
Fig. 1 The schematic spatial distribution of barium titanate and titanium nitride particles in the respective single-layer, ternary single-layer and ternary trilayer composites.

Fig. 2 (a) Photographs of the single-layer and trilayer composites. (b-d and f-h) Cross-sectional SEM morphologies and corresponding EDS mapping images of the trilayer composites. (e) XRD patterns of trilayer composite.
Fig. 3 Frequency dependences of dielectric permittivity and loss tangents for (a, b) single-layer and (c, d) trilayer BT/TiN/PVDF composites. (e, f) The comparison of dielectric performance at 10 kHz between the hybrid single-layer and trilayer composites with the same content of TiN and BaTiO₃.
Fig. 4 (a) Weibull distribution plots, (b) the comparison of characteristic breakdown strengths between the hybrid single-layer and trilayer composites with the same content of TiN and BaTiO₃.
Fig. 5 The distribution of (a,b) electric potential, (c,d) electric field strength and (e,f) leakage current density in single-layer and trilayer composites by finite element simulation.

Fig. 6 P-E loops of (a) single-layer and (b) trilayer composites under varied electric fields; (c) P-E loops of single-layer and trilayer composites under 50 kV/mm; The variation of maximum displacement P_{max} and remnant displacement P_{r} of the (d) single layer and (e) trilayer composites with different external electric fields; (f) $(P_{\text{max}}-P_{r})$ of the single layer and trilayer composites with different external electric fields.
Fig. 7 (a) The discharged energy densities, and (b) discharged efficiencies of the single-layer and trilayer composites under varied external electric fields.