Supporting information

A subcutaneously injected SERS nanosensor enabled long-term in vivo glucose tracking

Yikun Huang¹, Yi Luo², Haomin Liu³, Xiuling Lv³, Jing Zhao², and Yu Lei¹,³*

¹Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, CT 06269, USA

²Department of Chemistry, University of Connecticut, 261 Glenbrook Road, Storrs, CT 06269, USA

³Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA

⁴Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, 55 North Eagleville Road, Storrs, CT 06269, USA

*Corresponding author: Tel.: +1 860 486 4554; fax: +1 860 486 2959.

Email address: yu.lei@uconn.edu
Figure S1. UV-vis spectra of Au nanoparticles and MPBA-AuNPs, respectively.

Figure S2. An optical picture of chicken skin after the injection of MPBA-AuNPs aggregates.
Figure S3. Raman spectra of another two mice skin before (a) and after (d) sensing material injection. The MPBA peaks are indicated by red circles. (Other sharp peaks before and after injection are attributed to environmental or instrumental noise whose positions are labeled with green stars); Another two mice (b) and (e) glucose concentration change over 60 days, obtained using subcutaneously injected MPBA-AuNPs and non-invasive SERS monitoring; Another two mice (c) and (f) glucose concentration changes over 60 days, obtained using blood withdrawn from mouse tail vein and commercial glucose meter (HealthPro™ Glucose Monitoring System).